Film capacitor series keeps its cool even at 150°C

High-temp film capacitor, stays cool up to 150°C.


The Exxelia Dearborn 880P series of metalised Polyphenylene Sulfide (PPS) Film Capacitors is designed to keep cool when things get hot. With an operating temperature range of -55 to +150°C, they experience no derating for DC operations and none in AC operations up to +125°C.

This enables them to function at full capacity in extreme heat applications. The ability to operate at such high temperatures can eliminate the need for a cooling system within the design, thus reducing overall design time, weight and space.

PPS is a high-temperature, low-loss dielectric film used in the 880P series of wrap-and-fill capacitors. This allows them to feature superior electrical characteristics over an extremely wide temperature range and maintain excellent capacitance stability in one rugged, lightweight package. It performs consistently well in commercial applications such as in power supplies and in more demanding applications, such as in avionics, on a congested control or instrumentation panel.

The series features a capacitance range of 0.0047 to 10.0µF and voltage ratings from 50 to 400VDC with precision tolerances as low as ±¼% through ±10% yielding greater accuracy of capacitance. It is also a customisable unit with voltage maximums of 700 – 800VDC at 125°C maximum (higher voltages are available at reduced capacitance).

Made in the USA, the units are highly durable and capable of withstanding a five-pound pull force on lead axis. They are non-polar and demonstrate low loss factor, good voltage breakdown strength and high insulation resistance (low leak current) – and are completely stable over normal temperatures, voltages and frequency ranges. These characteristics allow the 880P series capacitors to deliver high performance in a variety of applications such as DC timing circuits, low- to high-frequency AC applications, and pulse or energy discharge uses.

Additionally, the package has axial leads with moisture-resistant, flame-retardant epoxy end seals and an outer tape covering for maximum performance.

Published on 04 Sep 2017 by Marion Van de Graaf

INNOVATIVE LOW PASS FILTERS

Low-pass filter solutions are mainly used for EMI suppression in electronics systems. Exxelia Technologies (ex-Eurofarad), part of Exxelia Group, has developed several ranges of miniature filters with different low-pass configuration (C, L, Pi, T, 2xPi, 2xL and 2xT) mainly intended to protect electronic equipment from interferences. Exxelia Technologies produces sophisticated filters assembling Exxelia Group’s manufactured ceramic capacitors (X7R/ NPO) with ferrite inductors or winding cores in a shielding case. This solution’s main benefits are performance, reliability and optimal traceability. Considering a filter in a shielding case implies a good metallic package to insure high shielding performances with attenuation up to 10 GHz. Among options, Exxelia offers glass sealing, steel or kovar package using tin, silver or gold plating treatments to withstand any thermally or mechanically challenged applicaiton. Exxelia offers innovative EMI suppression filter solutions providing great shielding performance including the FC030 feedthrough mounted on shielding enclosure and FCM030 series designed to prevent EMI on printed circuit board. FC030 series is feedthrough filter allowing to prevent not only EMI conduction but also EMI radiation on power supply or data signals designs up to 200V. FC030 insertion loss can be 20dB at 1MHz to reach 70dB up to 10 GHz. FC030 series is extremely performant on low frequencies applications. On the other hand, FC030 can offer very low capacitance values starting from 5pF allowing to protect high bandwidth data signals. Operating temperature from -55C° up to +175C°. FC030 series is ESA qualified.   FCM030 features same design and performances’ as FC030 and is intended for surface mount devices. FCM030 is packaged in full metallic silver plated allowing optimal contact with ground plane that improves the interferences flow to the ground. The series particularly fit for amplifiers, radars, sensitive HMI, accurate measuring.

Exxelia at Space Tech Expo – Booth #5009

100% invar tuning screws with self-locking system  Invar-36 is a unique Iron-Nickel alloy (64 % Fe / 36 % Ni) sought-after for its very low coefficient of thermal expansion. With 1.1 ppm. K–1 between 0°C and 100°C, Invar-36 is about 17 times more stable than Brass which is the most traditional and common alloy Tuning Elements are made of. The working temperature range in Space is so wide that this property becomes essential for a reliable and stable cavity filter tuning. Self-locking system is a technology commonly used on Tuning Element made of Brass or other soft “easy-to-machine” alloys but is innovative and pretty advanced when applied to hard and tough Invar 36. The design consists of two threaded segments separated by two parallel slots. After cutting both parallel slots, the rotor is compressed in its length in order to create a plastic deformation. Thus, an offset is induced between the two threaded segments which generates a constant tensile stress in the rotor from the moment threaded segments are screwed. High power and high frequency ceramics with the new C48X dielectric Range of high voltage ceramic capacitors based on brand new dielectric material C48X, combining most advantages of NPO and X7R dielectrics. Compared to X7R material, C48X dielectric allows to get the same capacitance values under working voltage with the unrivaled advantage of a very low dissipation factor (less than 5.10–4). Besides, it can also withstand very high dV/dt, up to 10kV/μs, which makes it the solution of choice for pulse and fast charge/discharge applications or firing units. Thus capacitors with C48X dielectric appear to be ideally suited for power applications where heat dissipation may be detrimental to performances and reliability. Magnetic components based on adaptive CCM technology Exxelia designed CCM technology to respond to the growing interest of electronic engineers for inductors and transformers with multiple outputs, high power density and reduced footprint. Qualified for aeronautic and space applications, the CCM product line features terrific robustness. The CCM technology adapts to most every need, even the harshest environments, including VIGON® resistance. The series offers five different sizes, allowing optimized component design in a pick-and-place surface mount (SMD) package. Through-hole (TH) packages are also available upon request. CCM transformers and inductors can operate over a wide temperature range with a minimal temperature of -55° C. The standard thermal grade of the technology is 140° C. The epoxy molding protecting the winding ensures a lower temperature gradient and a better heat dissipation. Each unit is thoroughly tested with a dielectric withstanding strength of 1,500 VAC.

This website uses cookies for statistics purposes. By continuing to browse the site you are agreeing to our use of cookies.