Fork me on GitHub

Film capacitor series keeps its cool even at 150°C

High-temp film capacitor, stays cool up to 150°C.


The Exxelia Dearborn 880P series of metalised Polyphenylene Sulfide (PPS) Film Capacitors is designed to keep cool when things get hot. With an operating temperature range of -55 to +150°C, they experience no derating for DC operations and none in AC operations up to +125°C.

This enables them to function at full capacity in extreme heat applications. The ability to operate at such high temperatures can eliminate the need for a cooling system within the design, thus reducing overall design time, weight and space.

PPS is a high-temperature, low-loss dielectric film used in the 880P series of wrap-and-fill capacitors. This allows them to feature superior electrical characteristics over an extremely wide temperature range and maintain excellent capacitance stability in one rugged, lightweight package. It performs consistently well in commercial applications such as in power supplies and in more demanding applications, such as in avionics, on a congested control or instrumentation panel.

The series features a capacitance range of 0.0047 to 10.0µF and voltage ratings from 50 to 400VDC with precision tolerances as low as ±¼% through ±10% yielding greater accuracy of capacitance. It is also a customisable unit with voltage maximums of 700 – 800VDC at 125°C maximum (higher voltages are available at reduced capacitance).

Made in the USA, the units are highly durable and capable of withstanding a five-pound pull force on lead axis. They are non-polar and demonstrate low loss factor, good voltage breakdown strength and high insulation resistance (low leak current) – and are completely stable over normal temperatures, voltages and frequency ranges. These characteristics allow the 880P series capacitors to deliver high performance in a variety of applications such as DC timing circuits, low- to high-frequency AC applications, and pulse or energy discharge uses.

Additionally, the package has axial leads with moisture-resistant, flame-retardant epoxy end seals and an outer tape covering for maximum performance.

Published on 04 Sep 2017 by Marion Van de Graaf

Exxelia acquires Deyoung MFG., INC.

“The DMI acquisition directly supports our Magnetics SBU expansion strategy. DMI’s strategic location in the Pacific Northwest aerospace market provides a key geographic location for driving growth and profitability,” said François Vignaud, Exxelia Magnetics’ SBU VP. “DMI is highly regarded for the quality of its products and the operational performance of its organization. DMI products can be found on most major commercial aerospace platforms, supporting in flight power, lighting and entertainment sub-systems.” “We welcome DMI into the Exxelia Group,” said Exxelia USA President Michael Thomas. “During its 40-plus years in business, DMI has built solid customer relationships with a strong brand reputation in the aerospace, medical and other high-reliability magnetics markets. Acquiring DMI creates the potential for both revenue and cost synergies related to cross selling and procurement savings as we leverage Exxelia Group’s broader global supply chain and operational excellence practices to support DMI’s operations.” According to Martin DeYoung, President & CEO of DMI, “We are excited to now be a part of Exxelia’s growth and expanded product offerings. The DeYoung’s recognized a shared business culture driven by a passion for quality and customer loyalty. By joining Exxelia Group we achieve a goal of meeting our strategic growth objectives while protecting our long standing relationships with our key aerospace customers and their contract manufacturers.” “This acquisition addresses our aerospace customers increasing requirements for global manufacturing access and timely support” stated Eric DeYoung, VP of Operations at DMI. “Together, we have global reach with the capability to serve our customers – whatever their size, location, or aerospace industry sector with one of the most comprehensive and competitive groups of design and manufacturing capabilities.”

Exxelia at Eurosatory

State-of-the art absolute optical encoders Exxelia has acquired deep expertise in the development of contactless position sensors of several type: absolute and incremental optical encoders, magnetic technology and inductive sensors. Several ranges of state-of-the-art absolute optical encoders will be showcased at the company booth - Hall 5A booth# E543. Absolute optical encoders are position sensors that use optical signals to identify an absolute angular position. They provide the highest resolution, operating speed reliability as well as long life operation in most demanding environments. Exxelia ranges of absolute optical encoders offer very high performance levels for a very small footprint: high precision (<30arcsc.), high resolution (up to 21 bits), extreme thinness (10mm) and EMI EMC compatibility. With their compact design, Exxelia miniature encoders meet the requirements of the most demanding application such as aerospace, defense, medical, oil & mining industries. Various protocols are available to match with any application.  Exxelia encoders can be easily combined with other functions such as slip rings to provide customers turkey solutions.   Two new ranges of MIL-qualified wet tantalum capacitors: MIL39006/22 & MIL39006/25 The recently introduced ranges of MIL-qualified tantalum capacitors will be showcased on the company booth. MIL 39006/22 and MIL 39006/25 respectively equivalent to CLR79 and CLR81 types featuring hermetically sealed cylindrical tantalum cases and axial leads are available in T1, T2 T3 and T4 cases with extended capacitance and voltage ratings. MIL 39006/22 is qualified for voltages from 6V to 125V and provides from 1200µF @6V to 56µF @125V. MIL 39006/25 is qualified for voltages from 25V to 125V and delivers from 680µF @25V to 82µF @125V. Both ranges combine high energy density with a large operating temperature range of -55°C - +125°C and H vibrations and shocks resistance.

This website uses cookies for statistics purposes. By continuing to browse the site you are agreeing to our use of cookies.